MICRO 2023

@ Berkeley Architecture Research S’LI’CEI

AURORA: Virtualized Accelerator Orchestration
for Multi-Tenant Workloads

Seah Kim, Jerry Zhao,
Krste Asanovic, Borivoje Nikolic, Yakun Sophia Shao

Berkeley

UNIVERSITY OF CALIFORNIA
< seah, jzh >@berkeley.edu 1




Trends in Modern SoCs: More Applications

Multiple tasks share system resources

§ o e F

Motion Trajectory
Prediction Planning

Clients

o & 2

N1/
L3

Cloud Accelerator

Detections Tracking

Autonomous Vehicle

@ Edge

@ Cloud



Trends in Modern SoCs: Multi-Accelerator

To keep up with application that are becoming more demanding...

32 Cores
Neural Engine

\I\II“I\II\I\

Neural Engine

Bionic

A12 - A13: 8 cores A14 - A16: 16 cores M1/M2 Ultra: 32 Cores

Apple A12 bionic Apple A16 bionic Apple M1 Ultra 3



Trends in Modern SoCs

More cores

e End of single-thread
performance scaling

e Many-core SoCs to
extract TLP

How to scalably architect
many-accelerator SoCs?

More accelerators @ More applications .
e More compute-bound e Software stacks grow in

workloads require complexity .
acceleration e Graphics/multimedia/Al

are pervasive




Trends in Modern SoCs

Accel

Accel

How to architect many-

Accel

accelerator SoCs? Accel
More accelk _ )
e More compute-bo N £

workloads require
acceleration

)

e applications
Software stacks grow in
complexity

e Graphics/multimedia/Al

are pervasive




Requirements for Accelerator Integration

= Goal: Enable scalable many-accelerator for multi-tenant execution

» Requirements:

Accel Accel| [

= Scalable deployment

= Many-accelerator integration

Accel Accel| [—




Requirements for Accelerator Integration

= Goal: Enable scalable many-accelerator for multi-tenant execution

» Requirements:

= Scalable deployment
= Many-accelerator integration

= Virtual accelerator integration

»  Abstraction for user’s view of accelerator instances

= ?2?7?

Physical
accelerator
instances

PID

PID

PID

PID

Virtualized
Accelerator



Physical Accelerator Integration

Program physical accelerator resources

Request accelerator using physical ID (PID)

Issues under multi-tenancy

Resource conflict
» Hard to repartition resource frequently
= Cause stall: Low utilization

Programming burden

Task Task
thread 1 thread 2
Request # 3 Request # 2
(PID 1, 2, 3) (PID 3, 4)

Conflict!



Virtual Accelerator Integration

Provides an abstraction between ...

Enable scalable many-accelerator for multi-tenancy

User’s view of accelerator

Physical accelerator instances

Requirements ...

Low latency
Programmable
Minimize SW overhead

Task 1

Task 2
PD ||| PID
1 2
PID | | PID
3 4

Task
thread 1

Request
(target)

Virtualized
Accelerator

Task
thread 2

Request
(target)



Requirements for Accelerator Integration

= Goal: Enable scalable many-accelerator for multi-tenant execution

» Requirements:

= Scalable deployment

= Virtual accelerator integration £
= Low latency : :
=  Programmable CPU— 7 :— Accelerator
= Minimal programming overhead : I
|

I
|
\

» |nterface: How accelerator interacts with host CPU

10



Existing Physical Accelerator Integration Methodologies

Accel <>

CPU

<>» Accel

v

v

v

SoC Interconnect

Tightly CPU-coupled:

Limited opcode space

Physically attached to CPU

opcode 0

CPU

—, AccelX

———" AccelY

X opcode 1

AccelZ

— Limited accelerator per core

11



Existing Physical Accelerator Integration Methodologies

Accel <> CPU <> Accel

v

—

SoC Interconnect

Tightly CPU-coupled:
Limited opcode space

Physically attached to CPU

Congested!

— Limited accelerator per core

—> Physical design challenge

Scalability issue

12



Existing Physical Accelerator Integration Methodologies

CPU CPU Accel Accel Setup PTW

$ $ ¢ ¢ CPU —— | IOMMU | Accel
SoC Interconnect

Memory-mapped over interconnect:
Setup accelerator OMMU for —  Software complexity
address translation

Access accelerator over system
bus, memory hierarchy

13



Existing Physical Accelerator Integration Methodologies

CPU CPU Accel Accel
Lat;,ncy SoC Interconnect

Memory-mapped over interconnect:
Setup accelerator OMMU for —  Software complexity
address translation

Access accelerator over system

— Latency overhead
bus, memory hierarchy

Virtual integration difficulties

14



AuRORA: Virtual Accelerator Integration and Orchestration

Software
A

ReRoCC J
Interface

—

Hardware

A full-stack system enabling scalable deployment and

virtualized integration of accelerators

Runtime
System

Tasks

Application 1
Application 2
Application 3

1

ISA
Extensions

1

Hardware
Messaging
Protocol

1

rerocc_acquire
rerocc_release

acquire / release

| = | #include

< aurora.h >

—_—>
Map

Accelerators

rd, rsl, rs2
rd, rsl

Micro-
architecture

Client: ~ > EManageH

""""" acknowledge

CPU<—>Client Manager <> Accel
A A
v $ $ v

SoC Interconnect

& : Scalability
V : Virtualization

v/ Virtualized accelerator management

& Enable acquiring many-accelerators
v Enable programmable virtual interface

v Low latency
v Enable virtual to physical mapping

& Enable physical disaggregation
v Provide illusion of tight-coupling

15



AuRORA Full Stack Implementation

Software

[ Runtime System 1

A\ 4

ISA Extensions

&: Scalability
v : Virtualization

Protocol

\ 4

Hardware Microarchitecture

| |
[ Hardware Messaging }
| |

16



AuRORA Full Stack Implementation

Software [ }

&: Scalability
v : Virtualization

& Enable physical disaggregation

Microarchitecture v Provide illusion of tight-coupling

| |
| |
orowars | | 1

17



AUuRORA Microarchitectural Components

: Manager
Client Tracker Shadow Registers
Register sets | i PTW
cPU e [T T T} Cache L2TLB | «>{ Accel
Instruction Instruction| |MEM Req.
Sender : | | Receiver | | Throttler

¥ | v

SoC Interconnect (Configurable)

AuRORA Client: AuRORA Manager:
Attaches to CPUs via RoCC Attaches to existing RoCC accelerators
Forwards accelerator instructions Shadow thread architectural state

to acquired manager Eliminate need of user-/supervisor-

managed IOMMU

18



AuRORA Full Stack Implementation

Software [ }

&: Scalability
v : Virtualization

Protocol v Enable virtual to physical mapping

Hardware

[ Hardware Messaglng } V' Low latency

19



AuRORA Hardware Messaging Protocol

Manages communication
between CPUs and Accelerators

Protocol supports:
= Client-manager synchronization
» Maintenance of shadowed
architectural state on managers
= Client-to-manager instruction
forwarding

Physical transport layer: network-
on-chip interconnect

CPU

|
Client 0

S

Acquire Granted
Request

\ 4

Manager O

---------------------------------------

@ Manager states

Acqwre

Release

----------------------------------------

CPU
|
Client 1

Acquire

Request Rejected

---------

---------



AuRORA Hardware Messaging Protocol

Manages communication CPU CPU
between CPUs and Accelerators | |
Client O Client 1
Protocol supports:
= Client-manager synchronization
» Maintenance of shadowed
_ Release
architectural state on managers Request
= Client-to-manager instruction
forwarding v
Manager O

Physical transport layer: network- |
on-chip interconnect Accel

------------------------------------------------

Acqwre
@ Manager states
Release

-------------------------------------------------



AuRORA Full Stack Implementation

Software [ }

A 4

Enable acquiring many-accelerators
ISA Extensions & quiring many

v Enable programmable virtual interface

&: Scalability
v : Virtualization

Hardware

N N

|
|
|

22



AUuRORA ISA Extensions

AuRORA Pseudolnst.
rerocc_acquire '
|
rerocc_assign '
_______________ /
rerocc_release

rerocc_fence

rerocc_memrate

= Allows user thread to interact with HW in programmable fashion

» Low-overhead: bounded by interconnect latency

23



AUuRORA ISA Extensions

rerocc_acquire

Maps physical accelerator to virtual accelerator index
Return success status

rerocc_assign

Maps virtual accelerator to available opcode on its

architectural thread
Allows an architectural thread to acquire more

accelerators than the available opcode space

CPU

|
Client 0
A

Acquire Granted
Request

A 4

Manager O
|

Accel

24



AuRORA Full Stack Implementation

Software [ Runtime System } v Virtualized accelerator management

Hardware

N N

25



AuRORA Runtime

Backwards compatibility with accelerator SW
Invoked only before entry of DNN layer execution

Low overhead
= Implements in user-space
* No need to preempt during layer execution

Dynamically allocate resources for multi-tenant workload
= Latency target-aware resource allocation

26



Flow Without AuURORA

: Scheduling granularity

T : Accelerator migrate

(layer)
*
: Accelerator | 1 Accelerator request
|
L]
Task 1
A
. | Resource
. L0 irequest
Physical Task 2 e
L] v

Task 3

Time ¢

Deadline 27



Flow Without AuURORA

: Scheduling granularity T : Accelerator migrate
(layer)
A
: Accelerator | 1 Accelerator request
|
L[] []
Task 1
Migrate [][]
I l ______________ L]
Physical Task 2
Migrate T
L]

Task 3

Time ¢

Deadline 28



Flow Without AuURORA

: Scheduling granularity T : Accelerator migrate 4
(layer)
A
: Accelerator | 1 Accelerator request
|
NN ] (000 Violation!
Task 1
L[]
Physical Task 2
L[]

Deadline 29



AuRORA Runtime

: Scheduling granularity \ - Accelerator release 1
(layer)

: Accelerator

DD\

Task 1

L]

Virtual Task 2

L[]

Deadline 30



AuRORA Runtime

: Scheduling granularity \ - Accelerator release 1

(layer)

: Accelerator
L] \ [] |l O0OO™

Task 1 ]

Acquire
00 V00O \ 00
Virtual Task 2 - ]

L] \ []

Task 3

Deadline 31



AuRORA Evaluation Methodology

= |Implementation details

= Full-system evaluation details
DNN accelerator generator: Gemmini

Hardware Manager/Client: Chisel RTL

= Integrated into Chipyard
Software runtime: C++, Linux pthread

= Runs on top of full Linux stack

NoC generator: Constellation

FPGA evaluation: FireSim

tJCHIP

8 GEMMINI

o

-lreSim

32



AuRORA Evaluation Methodology

Implementation details
= Hardware Manager/Client: Chisel RTL

= Integrated into Chipyard
= Software runtime: C++, Linux pthread

= Runs on top of full Linux stack

Full-system evaluation details
= DNN accelerator generator: Gemmini
= NoC generator: Constellation
=  FPGA evaluation: FireSim
= 2 integration configuration:

* Crossbar
=  NoC

MEM | ——Accel— Accel—{ CPU

—{CPU

[ | | |

MEM |— Accel—{Accel

——Accel—

—CPU

MEM |— —Accel Accel

—{Accel

— CPU

| | | |

- e B < e R e B -

@B — B — B — P

MEM |—

——Accel —1Accel CPU

—CPU

NoC Configuration for Evaluation

Parameter | Value
Systolic array dimension (per tile) 16x16
Scratchpad size (per tile) 128KiB
Accumulator size (per tile) 128KiB
# of accelerator tiles 10
Shared L2 size 2MB
Shared L2 banks 8
DRAM bandwidth 32GB/s
Frequency 1GHz

Chipyard SoC configuration ,

3



AuRORA Evaluation Methodology

Multi-tenant DNN accelerator baselines using physical accelerator
= Veltair: form layer-block to avoid frequent scheduling conflict
=  MoCA: groups of layers, dynamic repartition of memory resource

2 different configurations of AURORA
=  AuRORA-Compute: dynamic compute resource repartition, without NUMA
=  AuRORA-AIl: enable all optimization (memory partitioning, NUMA-aware
accelerator allocation)

34



AuRORA Evaluation Methodology

=  Benchmark DNNs: 10 different DNN inference models

= Grouped by model size
= Construct multi-tenant scenario: randomly generated 200-300 inference tasks

= QoS targets

= 3 different latency targets

QoS-H: 1.2x

QoS-M: 1x
QoS-L: 0.8x

Workload Model Size DNN Models
. SqueezeNet, Yolo-LITE, KWS,
Workload set-A | Light ResNet18, BERT-small
GooglLeNet, AlexNet,
Workload set-B | Heavy ResNet50, YoloV2, BERT-base
Workload set-C | Mixed All
Workload set-XR | Mixed XRBench Gaming Scenarios

35




AuRORA Evaluation Methodology

Evaluation Metrics:

= SLA Satisfaction Rate
Latency (QoS) target satisfaction ratio

=  System Throughput (STP)
Sum of each program’s normalized progress

= Fairness
Evaluates degree to which all programs make equal progress

XRBench metrics

For Workload set-XR evaluation

36



SLA Satisfaction Rate Improvement

= SLA (Service Level Agreement) satisfaction
=  Whether the request meets QoS target

Veltair B MoCA AuRORA-Compute B AuRORA-All

SLA Satisfaction Rate

0%

80%

QoS-L QoS-M QoS-H  QoS-L QoS-M QoS-H  QoS-L QoS-M QoS-H
Workload-A Workload-B Workload-C

37



SLA Satisfaction Rate Improvement

= SLA satisfaction rate
=  Range 0% (all fail) ~ 100% (all met QoS)

I |
Veltair B MoCA AuRORA-Compute B AuRORA-All

18100%
|2
I= 80%1
1.2
|'b' 60%1
1
.ﬂ 40%:
I=
©
ln 2091
1<

—
0% Q0S-L QoS-M QoS-H  QoS-L QoS-MQoS-H  QoS-L QoS-M QoS-H
- == Workload-A Workload-B Workload-C



SLA Satisfaction Rate Improvement

= 2-level x-axis

SLA Satisfaction Rate

Each Workload set subdivided into QoS target level

Veltair B MoCA AuRORA-Compute B AuRORA-All

100%
80%
60%
40%;

20%

0% I QoS-L QoS-M QoS-H QoS-L QoS-M QoS-H QoS-L QoS-M QoS-H
| Workload-A _ _ | _ workioadB _ _ | workioad-C_ _ _ |



SLA Satisfaction Rate Improvement

= SLA satisfaction rate: Crossbar
=  AuRORA-Compute: 1.9x over Veltair (2.76x max), 1.6x over MoCA (2.33x max)
Effectiveness of virtual accelerator management: fast reallocation of compute resources

=  AuRORA-AIl: improves 1.07x over AURORA-Compute (1.12x on Workload-B)
Effectiveness of dynamic memory resource management

Veltair s MoCA AuRORA-Compute B AuRORA-All

100%

80%

60%/1

40%:

20%

SLA Satisfaction Rate

0% QoS-L QoS-M QoS-H  QoS-L QoS-M QoS-H  QoS-L QoS-M QoS-H

Workload-A Workload-B Workload-C 40



SLA Satisfaction Rate Improvement

= SLA satisfaction rate: Crossbar
=  AuRORA-Compute: QoS-H shows highest improvement over baselines

2.68x over Veltair, 2.14x over MoCA
Physical resource partitioning overhead pronounced
Baseline’s coarser-grained strategy is challenging when fast reconfiguration is needed

Veltair B MoCA AuRORA-Compute B AuRORA-All

—
o
o
2

SLA Satisfaction Rate

QoS-L QoS-M QoS-H  QoS-L QoS-M QoS-H  QoS-L QoS-M QoS-H

Workload-A Workload-B Workload-C 41



Physical Design & Area Analysis

= Synthesize using Intel 16nm
= Synthesis: Cadence Genus

AuRORA only takes
2.7% of total area

Component Area ( /sz) % of Area
CPU tile 168K 100%
AuRORA Client 2K 1.2%
Rocket CPU 166K 98.8%
Accelerator tile 732K 100%
AuRORA Manager 22K 3%
Accelerator 710K 97%
Mesh 76K 10.4%
Accumulator 260K 35.5%
Scratchpad 150K 20.5%

Total (CPU tile+Accelerator tile) 900K 100%
AuRORA Client + Manager 24K 2.7%

42




Summary

= AuRORA: A full-stack hardware/software integration approach to support
virtualized accelerator orchestration

= AuRORA enables scalable many-accelerator system for multi-tenant execution

= Full-system evaluation using real SoC, real RISC-V cores and accelerators

» Performance/area evaluation using physically realizable RTL

» Multi-tenant scenario evaluation shows 2.02x target satisfaction rate improvement
over baseline

= Synthesis result shows < 2.7% area overhead

» QOpen-sourced, integrated to Chipyard SoC design framework

Open-sourced: https://github.com/ucb-bar/AuRORA




Thanks!

Please contact seah@berkeley.edu if you have any questions %

44



