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Multi-tenancy for DNN

Multiple tasks share system resources

2
@ Edge @ Cloud



Multi-tenancy Example
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Example: Pylot
Ionel Gog, Sukrit Kalra, Peter Schafhalter, Matthew A. Wright, Joseph E. Gonzalez, and Ion Stoica. Pylot: A 
Modular Platform for Exploring Latency-Accuracy Tradeoffs in Autonomous Vehicles, ICRA 2021



Multi-tenancy Example
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● Consists of multiple different modules
○ Perception, Prediction, Planning, Control 



Multi-tenancy Example
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● Multiple tasks exists in a module

Module consist of different models

Models with different processing rate
-> different target deadline



Multi-tenancy Example
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● Need multi-tenancy support by co-running multiple models together



Challenge 1 - Interference

● Performance degradation due to shared resource contention
○ LLC, DRAM, IO, System bus
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Challenge 1 - Interference

● Increased system-level interference cause significant performance degradation

Co-running DNNs

Up to 3x 
latency 
increase!

Co-running DNNs
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Challenge 1 - Interference

● Increased system-level interference cause significant performance degradation

Co-running DNNs
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Memory intensive FC layers
-> interference caused by memory contention 



Challenge 1 - Interference

● Increased system-level interference cause significant performance degradation

Co-running DNNs
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Short running network
-> depends on co-located workload 
characteristics of using shared resources



Challenge 1 - Interference

● Increased system-level interference cause significant performance degradation

Co-running DNNs
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Short running network
-> depends on co-located workload 
characteristics of using shared resources

Need management and dynamic manipulation 
of shared resources

Need runtime contention detection
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Challenge 2 - Scheduling

Different target latency: target-aware
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Challenge 2 - Scheduling

Different target latency: target-aware P. Minet, É. Renault, I. Khoufi and S. Boumerdassi, "Analyzing 
Traces from a Google Data Center," 2018 IWCMC

Varied user-given priority level: priority-aware

Infrastructure Monitoring

Others
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Prior Works in Multi-tenancy

● Two challenges in Multi-tenancy execution
○ System level interference
○ Target & Priority aware scheduling

● How did prior works address the challenges?

● MoCA’s advantage over prior works?
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Prior Works in Multi-tenancy

● Time multiplexing workloads using preemption

+ Target, priority aware scheduler

- No spatial co-location
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Prior Works in Multi-tenancy

● Dynamic compute resource partitioning

+ Target, priority aware scheduler
+ Spatial co-location

- Fixed compute-to-memory ratio
- Tile granularity repartitioning 

(~1M cycles thread migration overhead)



Prior Works in Multi-tenancy

Dynamically partitioning 
memory resources
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MoCA’s Full-Stack Implementation

Priority, Target, Memory aware

Contention detection
Adaptive memory resource partition

Memory access monitor 
Throttle

Co-running layers

MEM rate configure

Local

Global
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MoCA’s Full-Stack Implementation

Memory access monitor 
Throttle

MEM rate configure

Local

Global
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MoCA Hardware

Memory Interface
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● Inputs from Runtime: window, Threshold

● Implemented inside Memory Interface
○ Self-contained module

Request



MoCA Hardware

Memory Interface

22

● Inputs from Runtime: window, Threshold

● Implemented inside Memory Interface
○ Self-contained module

Request

Req made



MoCA Hardware

Memory Interface
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● Inputs from Runtime: window, Threshold

● Implemented inside Memory Interface
○ Self-contained module

● Controls Mem req rate using 2 params 
○ Monitoring time “window”
○ # request “Threshold” per time window

Request

Req made

# of Req



MoCA Hardware

Memory Interface
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● Inputs from Runtime: window, Threshold

● Implemented inside Memory Interface
○ Self-contained module

● Controls Mem req rate using 2 params 
○ Monitoring time “window”
○ # request “Threshold” per time window

● Generates ld/st to meet configured rate
○ Halt if it goes over

Request

Req made

# of Req

Halt



MoCA’s Full-Stack Implementation

Contention detection
Adaptive memory resource partition

Co-running layers

MEM rate configure

Local

Global
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● Leverage DNN regularity

● Calculates latency estimate of a layer
○ Using # of computation, # of ld/st

● Calculates required Mem access rate

MoCA Runtime
Input from Scheduler
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● Runtime contention detection
○ Sum up all required Mem access rate
○ Detect contention when bandwidth usage 

exceeds available bandwidth 

MoCA Runtime

compare(System_BW, Σ BW_i)
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● If contention detected, configure MoCA HW
○ Monitoring time “window”
○ “# Req” per time window

● Dynamic memory partition using 
dynamic priority score
○ User-given priority + Target 

MoCA Runtime

Output to Hardware



MoCA’s Full-Stack Implementation

Priority, Target, Memory aware

Co-running layers

Local

Global
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● Priority, target aware dynamic scoring
● Lightweight, low overhead

0 1 2 3 4 5 6 … 
S0 S1 S2 S3 S4 S5 S6 … 

ID
Score

MoCA Scheduler
Pick Score > Threshold

4 1 6 … 
S4 S1 S6 … 

Sort(Score)

Sorted Queue

slow_downi = waiting_timei/estimated_timei
dynamic scorei = priorityi + slow_downi
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Breakdown models into 
compute/memory intensive parts
(Use compute-to-memory ratio)

MoCA Scheduler

4 1 6 … 
S4 S1 S6 … 

Model breakdown
Sorted Queue

ID
Score
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● Group compute intensive and memory intensive part
○ Better resource utilization

MoCA Scheduler

4 1 6 … 
S4 S1 S6 … 

Model breakdown

Group

ID
Score
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MoCA Scheduler

4 1 6 … 
S4 S1 S6 … 

Model breakdown

Group

● Allocate computation resources
● Decides workload to run concurrently

ID
Score
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MoCA Scheduler

4 1 6 … 
S4 S1 S6 … 

Model breakdown

Group

● Decides workload to run concurrently
○ Memory-demanding & Compute-demanding tasks co-scheduled

ID
Score
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● Implementation details
○ Hardware: Chisel RTL language, Gemmini 

○ Software: C++, Linux pthread
■ Runs on top of full Linux stack

○ Simulator: FireSim

MoCA Evaluation

Chipyard SoC configuration
36



● Multi-tenant DNN accelerator baselines
○ PREMA: time-multiplexing
○ Static Partitioning: no repartitioning resource during runtime
○ Planaria: dynamically repartition of compute resources

● Benchmarks: 7 different DNN inference models
○ Grouped by model size, 3 sets

● QoS targets
○ 3 different latency targets

■ QoS-H: 1.2x
■ QoS-M: 1x
■ QoS-L: 0.8x

MoCA Evaluation

Workload Model Size DNN Models

Workload set-A Light SqueezeNet, Yolo-LITE, KWS

Workload set-B Heavy
GoogLeNet, AlexNet, 
ResNet50, YoloV2

Workload set-C Mixed All
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SLA Satisfaction Rate Improvement
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● SLA (Service Level Agreement) satisfaction 
○ Whether the request meets QoS target



SLA Satisfaction Rate Improvement
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● SLA satisfaction rate
○ Absolute value
○ Range 0 (all fail) ~ 1 (all met QoS) 



SLA Satisfaction Rate Improvement
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● 2-level x-axis
○ Each workload set subdivided into QoS target level



● Workload-A: Light models
○ Prema: poor due to low scalability of light models
○ Planaria: poor due to pronounced thread migration overhead
○ MoCA’s advantage more pronounced for QoS-H

SLA Satisfaction Rate Improvement
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● Workload-B: Heavy models
○ MoCA’s advantage over Planaria more pronounced for QoS-H

■ Less thread migration overhead

SLA Satisfaction Rate Improvement
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● Workload-C: All models
○ Baselines: in between workload-A & -B
○ MoCA: co-schedule memory-intensive & light model with mixed workload set

SLA Satisfaction Rate Improvement
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● MoCA improves SLA satisfaction rate:
○ Shows effectiveness of ability to modulate shared memory contention
○ Shows good adaptiveness without thread migration overhead

SLA Satisfaction Rate Improvement

○ To Prema: 8.7x (geomean), 18.1x (max)
○ To Static Partition: 1.8x (geomean), 2.4x (max)
○ To Planaria: 1.8x (geomean), 3.9x (max) 45



Throughput Comparison

● MoCA constantly shows better throughput than baselines
● Workload-C (mixed): shows highest improvement

○ Better compute/memory utilization 
○ More co-location of memory and compute intensive layers
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Normalized to Planaria

○ To Prema: 12.5x (geomean), 20.5x (max)
○ To Static Partition: 1.7x (geomean), 2.1x (max)
○ To Planaria: 1.7x (geomean), 2.3x (max)



Fairness Comparison

● Fairness metric: 
○ Measures the degree to which all programs have equal progress
○ Evaluate priority aware scoring

● Fairness improvement
○ Co-runners do not unequally starve
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Normalized to Planaria



Physical Design & Area Analysis

MoCA takes only small area: 0.02% out of entire

Layout of an accelerator tile with MoCA Area breakdown of an accelerator tile with MoCA

● Synthesize, Place & Route using GF 12nm
○ Synthesis: Cadence Genus

○ Place-and-route: Cadence Innovus
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● Artifact evaluated & available
○ ORO (opened) / ROR (reviewed) / ROR-R (result reproduced)

Artifact Evaluation Badging

Artifact repo: https://github.com/ucb-bar/MoCA 

https://github.com/ucb-bar/MoCA
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● Develop MoCA System for multi-tenant DNN accelerator
○ Adaptively adjust contentiousness under system-level contention

● MoCA Hardware
○ Monitor memory accesses and limit the request

● MoCA Runtime
○ Runtime contention detection
○ Adaptively configure hardware based on target and priority

● MoCA Scheduler
○ Priority, target, memory contention aware scheduler for multi-tenant execution

Contribution
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Please contact seah@berkeley.edu if you have any questions 
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Thanks!


