
MoCA: Memory-Centric, Adaptive Execution
for Multi-Tenant Deep Neural Networks

Seah Kim, Hasan Genc, Vadim Nikiforov,
Krste Asanovic, Borivoje Nikolic, Yakun Sophia Shao

1

HPCA 2023

Seah Kim (seah@berkeley.edu)

Multi-tenancy for DNN

Multiple tasks share system resources

2
@ Edge @ Cloud

Multi-tenancy Example

3
Example: Pylot
Ionel Gog, Sukrit Kalra, Peter Schafhalter, Matthew A. Wright, Joseph E. Gonzalez, and Ion Stoica. Pylot: A
Modular Platform for Exploring Latency-Accuracy Tradeoffs in Autonomous Vehicles, ICRA 2021

Multi-tenancy Example

4

● Consists of multiple different modules
○ Perception, Prediction, Planning, Control

Multi-tenancy Example

5

● Multiple tasks exists in a module

Module consist of different models

Models with different processing rate
-> different target deadline

Multi-tenancy Example

6

● Need multi-tenancy support by co-running multiple models together

Challenge 1 - Interference

● Performance degradation due to shared resource contention
○ LLC, DRAM, IO, System bus

7

Challenge 1 - Interference

● Increased system-level interference cause significant performance degradation

Co-running DNNs

Up to 3x
latency
increase!

Co-running DNNs

8

Challenge 1 - Interference

● Increased system-level interference cause significant performance degradation

Co-running DNNs

9

Memory intensive FC layers
-> interference caused by memory contention

Challenge 1 - Interference

● Increased system-level interference cause significant performance degradation

Co-running DNNs

10

Short running network
-> depends on co-located workload
characteristics of using shared resources

Challenge 1 - Interference

● Increased system-level interference cause significant performance degradation

Co-running DNNs

11

Short running network
-> depends on co-located workload
characteristics of using shared resources

Need management and dynamic manipulation
of shared resources

Need runtime contention detection

12

Challenge 2 - Scheduling

Different target latency: target-aware

13

Challenge 2 - Scheduling

Different target latency: target-aware P. Minet, É. Renault, I. Khoufi and S. Boumerdassi, "Analyzing
Traces from a Google Data Center," 2018 IWCMC

Varied user-given priority level: priority-aware

Infrastructure Monitoring

Others

14

Prior Works in Multi-tenancy

● Two challenges in Multi-tenancy execution
○ System level interference
○ Target & Priority aware scheduling

● How did prior works address the challenges?

● MoCA’s advantage over prior works?

15

Prior Works in Multi-tenancy

● Time multiplexing workloads using preemption

+ Target, priority aware scheduler

- No spatial co-location

16

Prior Works in Multi-tenancy

● Dynamic compute resource partitioning

+ Target, priority aware scheduler
+ Spatial co-location

- Fixed compute-to-memory ratio
- Tile granularity repartitioning

(~1M cycles thread migration overhead)

Prior Works in Multi-tenancy

Dynamically partitioning
memory resources

17

1. Motivation

2. MoCA System

3. Methodology

4. Evaluation results

Index

18

MoCA’s Full-Stack Implementation

Priority, Target, Memory aware

Contention detection
Adaptive memory resource partition

Memory access monitor
Throttle

Co-running layers

MEM rate configure

Local

Global

19

MoCA’s Full-Stack Implementation

Memory access monitor
Throttle

MEM rate configure

Local

Global

20

MoCA Hardware

Memory Interface

21

● Inputs from Runtime: window, Threshold

● Implemented inside Memory Interface
○ Self-contained module

Request

MoCA Hardware

Memory Interface

22

● Inputs from Runtime: window, Threshold

● Implemented inside Memory Interface
○ Self-contained module

Request

Req made

MoCA Hardware

Memory Interface

23

● Inputs from Runtime: window, Threshold

● Implemented inside Memory Interface
○ Self-contained module

● Controls Mem req rate using 2 params
○ Monitoring time “window”
○ # request “Threshold” per time window

Request

Req made

of Req

MoCA Hardware

Memory Interface

24

● Inputs from Runtime: window, Threshold

● Implemented inside Memory Interface
○ Self-contained module

● Controls Mem req rate using 2 params
○ Monitoring time “window”
○ # request “Threshold” per time window

● Generates ld/st to meet configured rate
○ Halt if it goes over

Request

Req made

of Req

Halt

MoCA’s Full-Stack Implementation

Contention detection
Adaptive memory resource partition

Co-running layers

MEM rate configure

Local

Global

25

26

● Leverage DNN regularity

● Calculates latency estimate of a layer
○ Using # of computation, # of ld/st

● Calculates required Mem access rate

MoCA Runtime
Input from Scheduler

27

● Runtime contention detection
○ Sum up all required Mem access rate
○ Detect contention when bandwidth usage

exceeds available bandwidth

MoCA Runtime

compare(System_BW, Σ BW_i)

28

● If contention detected, configure MoCA HW
○ Monitoring time “window”
○ “# Req” per time window

● Dynamic memory partition using
dynamic priority score
○ User-given priority + Target

MoCA Runtime

Output to Hardware

MoCA’s Full-Stack Implementation

Priority, Target, Memory aware

Co-running layers

Local

Global

29

30

● Priority, target aware dynamic scoring
● Lightweight, low overhead

0 1 2 3 4 5 6 …
S0 S1 S2 S3 S4 S5 S6 …

ID
Score

MoCA Scheduler
Pick Score > Threshold

4 1 6 …
S4 S1 S6 …

Sort(Score)

Sorted Queue

slow_downi = waiting_timei/estimated_timei
dynamic scorei = priorityi + slow_downi

31

Breakdown models into
compute/memory intensive parts
(Use compute-to-memory ratio)

MoCA Scheduler

4 1 6 …
S4 S1 S6 …

Model breakdown
Sorted Queue

ID
Score

32

● Group compute intensive and memory intensive part
○ Better resource utilization

MoCA Scheduler

4 1 6 …
S4 S1 S6 …

Model breakdown

Group

ID
Score

33

MoCA Scheduler

4 1 6 …
S4 S1 S6 …

Model breakdown

Group

● Allocate computation resources
● Decides workload to run concurrently

ID
Score

34

MoCA Scheduler

4 1 6 …
S4 S1 S6 …

Model breakdown

Group

● Decides workload to run concurrently
○ Memory-demanding & Compute-demanding tasks co-scheduled

ID
Score

1. Motivation

2. MoCA System

3. Methodology

4. Evaluation results

Index

35

● Implementation details
○ Hardware: Chisel RTL language, Gemmini

○ Software: C++, Linux pthread
■ Runs on top of full Linux stack

○ Simulator: FireSim

MoCA Evaluation

Chipyard SoC configuration
36

● Multi-tenant DNN accelerator baselines
○ PREMA: time-multiplexing
○ Static Partitioning: no repartitioning resource during runtime
○ Planaria: dynamically repartition of compute resources

● Benchmarks: 7 different DNN inference models
○ Grouped by model size, 3 sets

● QoS targets
○ 3 different latency targets

■ QoS-H: 1.2x
■ QoS-M: 1x
■ QoS-L: 0.8x

MoCA Evaluation

Workload Model Size DNN Models

Workload set-A Light SqueezeNet, Yolo-LITE, KWS

Workload set-B Heavy
GoogLeNet, AlexNet,
ResNet50, YoloV2

Workload set-C Mixed All

37

1. Motivation

2. MoCA System

3. Methodology

4. Evaluation results

Index

38

SLA Satisfaction Rate Improvement

39

● SLA (Service Level Agreement) satisfaction
○ Whether the request meets QoS target

SLA Satisfaction Rate Improvement

40

● SLA satisfaction rate
○ Absolute value
○ Range 0 (all fail) ~ 1 (all met QoS)

SLA Satisfaction Rate Improvement

41

● 2-level x-axis
○ Each workload set subdivided into QoS target level

● Workload-A: Light models
○ Prema: poor due to low scalability of light models
○ Planaria: poor due to pronounced thread migration overhead
○ MoCA’s advantage more pronounced for QoS-H

SLA Satisfaction Rate Improvement

42

● Workload-B: Heavy models
○ MoCA’s advantage over Planaria more pronounced for QoS-H

■ Less thread migration overhead

SLA Satisfaction Rate Improvement

43

● Workload-C: All models
○ Baselines: in between workload-A & -B
○ MoCA: co-schedule memory-intensive & light model with mixed workload set

SLA Satisfaction Rate Improvement

44

● MoCA improves SLA satisfaction rate:
○ Shows effectiveness of ability to modulate shared memory contention
○ Shows good adaptiveness without thread migration overhead

SLA Satisfaction Rate Improvement

○ To Prema: 8.7x (geomean), 18.1x (max)
○ To Static Partition: 1.8x (geomean), 2.4x (max)
○ To Planaria: 1.8x (geomean), 3.9x (max) 45

Throughput Comparison

● MoCA constantly shows better throughput than baselines
● Workload-C (mixed): shows highest improvement

○ Better compute/memory utilization
○ More co-location of memory and compute intensive layers

46

Normalized to Planaria

○ To Prema: 12.5x (geomean), 20.5x (max)
○ To Static Partition: 1.7x (geomean), 2.1x (max)
○ To Planaria: 1.7x (geomean), 2.3x (max)

Fairness Comparison

● Fairness metric:
○ Measures the degree to which all programs have equal progress
○ Evaluate priority aware scoring

● Fairness improvement
○ Co-runners do not unequally starve

47

Normalized to Planaria

Physical Design & Area Analysis

MoCA takes only small area: 0.02% out of entire

Layout of an accelerator tile with MoCA Area breakdown of an accelerator tile with MoCA

● Synthesize, Place & Route using GF 12nm
○ Synthesis: Cadence Genus

○ Place-and-route: Cadence Innovus

48

49

● Artifact evaluated & available
○ ORO (opened) / ROR (reviewed) / ROR-R (result reproduced)

Artifact Evaluation Badging

Artifact repo: https://github.com/ucb-bar/MoCA

https://github.com/ucb-bar/MoCA

50

This research was, in part, funded by the U.S. Government under the DARPA RTML program
(contract FA8650-20-2-7006).

This work was also supported in part by the NSF Award CCF-1955450 and in part by SLICE
Lab industrial sponsors and affiliates.

The views and conclusions contained in this document are those of the authors and should not
be interpreted as representing the official policies, either expressed or implied, of the U.S.
Government.

Acknowledgement

● Develop MoCA System for multi-tenant DNN accelerator
○ Adaptively adjust contentiousness under system-level contention

● MoCA Hardware
○ Monitor memory accesses and limit the request

● MoCA Runtime
○ Runtime contention detection
○ Adaptively configure hardware based on target and priority

● MoCA Scheduler
○ Priority, target, memory contention aware scheduler for multi-tenant execution

Contribution

51

Please contact seah@berkeley.edu if you have any questions

52

Thanks!

