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Abstract
Simultaneous Localization and Mapping (SLAM) plays a cru-

cial role in robotics, autonomous systems, and augmented

and virtual reality (AR/VR) applications by enabling de-

vices to understand and map unknown environments. How-

ever, deploying SLAM in AR/VR applications poses signif-

icant challenges, including the demand for high accuracy,

real-time processing, and efficient resource utilization, espe-

cially on compact and lightweight devices. To address these

challenges, we propose SuperNoVA, which enables high-

accuracy, real-time, large-scale SLAM in resource-constrained

settings through a full-stack system, spanning from algo-

rithm to hardware. In particular, SuperNoVA dynamically

constructs a subgraph to meet the latency target while pre-

serving accuracy, virtualizes hardware resources for efficient

graph processing, and implements a novel hardware architec-

ture to accelerate the SLAM backend efficiently. Evaluation

results demonstrate that, for a large-scale AR dataset, Super-

NoVA reduces full SLAM backend computation latency by

89.5% compared to the baseline out-of-order CPU and 78.6%

compared to the baseline embedded GPU, and reduces the

maximum pose error by 89% over existing SLAM solutions,

while always meeting the latency target.

1 Introduction
Simultaneous Localization and Mapping (SLAM) is a critical

workload in robotics [10, 47], autonomous systems [11, 48]

and AR/VR [23, 25, 45], enabling navigation and map con-

struction of unknown environments in real-time. It involves

the integration of sensor data to concurrently estimate the

position and construct a map of its surroundings. Specifi-

cally, the demand for SLAM in AR/VR is driven by a diverse

range of applications, including gaming, architectural vi-

sualization, remote collaboration, and training simulations,

where the seamless integration of virtual content with the

real world is crucial for delivering compelling immersive

experiences. In these critical applications, the accuracy and

efficiency of SLAM algorithms are paramount to providing

spatial understanding and seamless tracking.

Figure 1. SuperNoVA is a novel full-stack system for co-

designing algorithm-hardware for high-accuracy real-time

SLAM solver on resource-constrained settings.

However, SLAM deployment is challenging in AR/VR ap-

plications due to several key constraints. First, seamlessly in-

tegrating virtual content into the physical world requires pre-

cise tracking of both user position and orientation. Achieving

high accuracy relies on processing large volumes of sensor

data and trajectories, which is computationally intensive.

Second, SLAM must operate in real-time to provide imme-

diate feedback to the system and to match the strict sensor

input rate and frame update rate. Balancing real-time re-

quirements while maintaining accuracy and efficiency is

a significant challenge. Third, physical device constraints,

such as stringent battery and form-factor constraints, impose

limitations on available on-device computational resources,

further adding to the challenge.

Existing SLAM solutions, both hardware and algorithms,

fall short of these requirements, suffering from either high

computational costs too high for real-time applications or

accuracy degradation over time [31, 52]. Previous efforts to

accelerate SLAM using multi-core CPUs [1] and GPUs [2, 13,

41] do not fully leverage SLAM-specific properties, leading to

inefficient or power-hungry hardware that is unsuitable for

battery- and area-constrained wearable devices. Attempts

with specialized accelerators like FPGAs [17, 34] or ASICs
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Figure 2. Performance breakdown of a typical SLAM system.

[32, 48] have focused on smaller-scale problems and lack

the scalability and adaptability needed for broader AR/VR

applications. Thus, there is a pressing demand for innova-

tive approaches that can deliver superior performance while

remaining flexible and scalable to meet the evolving require-

ments of AR/VR applications.

To address these challenges, this work presents Super-

NoVA
1
, a novel full-stack system that co-designs the algo-

rithm and hardware to enable resource-aware SLAM back-

end. As shown in Figure 1, SuperNoVA consists of 1) an

algorithm that computes a subproblem of SuperNodes to
meet the latency requirement, 2) a dynamic runtime algo-

rithm that Virtualizes hardware resources from application

thread for efficient tree graph processing, and 3) a hardware

Architecture that accelerates the SLAM backend efficiently.

Our evaluation shows that SuperNoVA reduces the full SLAM

backend computation latency by 89.5% compared to out-of-

order CPU and 78.6% compared to GPU, and reduces the

maximum pose error by 89% compared to existing SLAM

solutions for a large-scale AR dataset, LaMAR [46], while

meeting the target processing time. In summary, this paper

makes the following contributions:

• We propose SuperNoVA, a novel full-stack system to

enable a real-time, high-accuracy global SLAM solver

in resource-constrained settings.

• We develop the SuperNoVA algorithm, a resource-

aware incremental smoothing and mapping algorithm

that achieves high accuracy while always meeting the

target deadline.

• We implement the SuperNoVA runtime, which virtu-

alizes accelerators for efficient run-time management

of hardware resources for graph processing.

• We design the SuperNoVA hardware architecture to

accelerate the SLAM backend, which delivers high

and robust performance, and implement it in RTL.

2 Background and Motivation
This section discusses SLAM deployment challenges and

prior works on the SLAM backend algorithm and its hard-

ware acceleration.

1
https://github.com/ucb-bar/SuperNoVA

Table 1. SLAM processing requirement for AR/VR.

Refresh Absolute Power Trajectory

Rate (Hz) Error (cm) (W) Length (m)

30 5 1 1000

2.1 SLAM Deployment and Requirements
SLAM is ubiquitous in the domain of autonomous vehicles,

robotics, and AR/VR applications. Localization refers to es-

timating the system’s current position, and mapping refers

to constructing a representation of the surrounding envi-

ronment. For example, an autonomous system uses SLAM

to make decisions about its next action; an AR/VR applica-

tion relies on SLAM in order to display realistic 3D scenes.

The AR/VR use case is particularly challenging because it

requires a low-latency, high-absolute-accuracy response for

a large-scale problem as shown at Table 1 [25, 46]. A missed

deadline or inaccurate localization may lead to frame skip-

ping or inconsistent geometry in rendering, which induces

motion sickness over long periods of use [36? ].
A SLAM workload can be roughly split into two stages,

the frontend and the backend. The frontend collects and pro-

cesses various sensor measurements to create constraints

between unknown states (poses, landmark locations, etc.).

The backend performs a maximum-a-posteriori (MAP) esti-

mation given all the constraints. In general, the frontend has

a small, fixed computation, requiring little resources to meet

the target refresh rate, while the backend latency depends

heavily on the trajectory of the system and the environment.

Figure 2 shows the performance breakdown of a SLAM sys-

tem [45] running the EuRoC dataset [9] on a commercial

Intel Xeon Gold 6354 Processor. Unlike the frontend, the

backend latency varies drastically from iteration to iteration.

This backend dynamicity is the major obstacle to designing

an accurate, real-time SLAM solution.

2.2 SLAM Solver
The SLAM backend is a state estimation problem that con-

sists of a linear least-squares (LLS) problem in the inner

loop of the form Equation (2). There are many prior works

with different formulations and library implementations to

efficiently solve this LLS problem, as shown in Table 2. Lo-

cal methods such as local bundle adjustment (LBA), visual-

inertial odometry (VIO), and extended Kalman filter (EKF)

methods provide a low-latency estimate of the recent trajec-

tory or local map space by discarding states that are outside

of a sliding window. The main drawback of local methods is

that small errors can accumulate and cause a large drift over

time. On the other hand, global methods such as full bundle

adjustment (FBA) and pose graph optimization (PGO) are ca-

pable of handling loop closure (LC) events (when the system

returns to a previous location) and correcting the drift. Thus,

a common multi-level SLAM setup would have a local solver
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Table 2. Comparison of SLAM backend solvers.

Backend

solvers

Local Global Incremental RA-ISAM2

Example

libraries

ROVIO [8],

G2O [19]

PyPose [49],

G2O [19]

GTSAM [14] Ours

Global

consistency

✗ ✓ ✓ ✓

Bounded

latency

✓ ✗ ✗ ✓

Loop

closure

✗ ✓ ✓ ✓

Resource-

aware

✗ ✗ ✗ ✓

running at sensor frequency and a global solver that handles

LCs. An LC event may update a large portion of the map.

During the long latency of solving the LC, the system must

use the state estimate from the local solver, which may cause

a sudden spike in pose estimation error that leads to serious

consequences, such as inconsistent AR/VR rendering.

Incremental methods, such as incremental smoothing and

mapping (ISAM2), are a separate class of solvers that is

widely considered to be state-of-the-art in online SLAM [26].

Incremental methods update only the affected sub-map. In
most cases, they achieve high accuracy with very low la-

tency; however, upon an LC event, a large part of the map

needs to be updated, leading to high processing latency. The

variability in latency (such as that in Figure 2) makes ISAM2

unsuitable for latency-critical applications such as AR/VR.

Our proposed solution, SuperNoVA, is capable of handling

LC events with high accuracy while ensuring that the tar-

get latency is met, by using a resource-aware incremental

algorithm (RA-ISAM2).

2.3 SLAM Hardware Acceleration
Modernmobile SLAMapplications commonly use CPU as the

compute platform [7, 42], which is versatile and can handle

a wide range of tasks. However, multi-core CPUs lack the

parallel processing power required for real-time SLAM. To

leverage the parallelism in compute-intensive SLAM tasks,

GPU solutions have been widely proposed [2, 13, 41], but

they suffer from high power consumption and large form

factor, which is not suitable for wearable AR/VR devices.

Custom accelerators for SLAM have also been proposed;

however, prior works focus on smaller-scale problems, such

as SoCs for VIO [48] or LBA [32] for drones, or FPGA-based

acceleration [17, 21, 22, 34, 51].

SLAM for AR/VR applications is particularly challenging

due to the large, dynamic problem size and stringent con-

straints on power, weight, and latency. This motivates an

SoC-based approach. Prior works [17, 22, 32, 34, 48] in SLAM

hardware acceleration have followed a common paradigm:

they characterize the algorithm and operating conditions

(e.g., power, latency, accuracy) and then design accelerators

3%1%77%

4%
10%

3%2%

Relinearization
Symbolic
Numeric: Cholesky - GEMM
Numeric: Cholesky - others
Numeric: Hessian
Numeric: Merge
Numeric: Others

Figure 3. Representative SLAM backend latency breakdown.

tailored to these specifications.While effective for static prob-

lem sizes up to tens of timesteps, these designs struggle to

handle dynamic environmental changes such as LCs, where

the sparse matrix structure is determined at runtime. Once

generated, the fixed-functional units are physically limited

to the predetermined problem sizes and cannot guarantee

bounded latency for larger problems. This inflexibility makes

prior solutions unsuitable for large-scale, real-time SLAM.

In contrast, SuperNoVA takes a fundamentally different

approach. It adapts in real-time to both environmental condi-

tions and available hardware resources by changing the algo-

rithm at runtime. The flexible orchestration of programmable,

virtualized hardware accelerators supports variable-sized

supernodes and exploits different levels of parallelism on-

the-fly, which is the key to sparse matrix factorization. This

adaptability allows it to scale to much larger problems, han-

dling thousands of timesteps with latency guarantees.

Besides SLAM accelerators, there has been prior research

on accelerating matrix factorization using systolic array-

based accelerators for matrix multiplication (GEMM), which

is a key operation in the SLAM backend (Figure 3). However,

these works accelerate a static matrix factorization problem

without the context of SLAMapplication’s dynamicity, which

leads to a lack of consideration for critical system operations

such as dynamic memory management [16] and prevents

them from taking advantage of the application-specific prop-

erties of the problem such as block sparsity [50].

Therefore, a systematic way of designing both algorithm

and hardware is needed. To the best of our knowledge, Su-

perNoVA is the first full-stack approach to co-designing al-

gorithm and hardware for large-scale, real-time SLAM on

resource-constrained platforms.

3 SLAM Algorithm
This section discusses the mathematical formulation of the

SLAM backend problem, and provides a background to the

incremental smoothing and mapping (ISAM2) algorithm,

which is the basis for RA-ISAM2.

3.1 Overview
The SLAM backend is a state estimation problem which can

be written as the nonlinear least-squares (NLS) problem over
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Figure 4. Elimination tree and frontal matrix representation.

The 𝐿𝐶s are discarded after the factorization.

Figure 5. Hessian construction and Cholesky factorization.

a set of factors

𝑋 = argmin

𝑋

𝜙 (𝑋 ) = argmin

𝑋

∑︁
𝑖

∥𝜙𝑖 (𝑋 )∥22 (1)

A factor 𝜙𝑖 (𝑋 ) represents the reprojection error of a sensor

measurement. Each component𝑋 𝑗 represents a variable to be

estimated, such as a pose or a landmark. The Gauss-Newton’s

method of solving this NLS problem linearizes Equation (1)

as the standard linear least-squares (LLS) problem

argmin

Δ
∥ 𝐽Δ − 𝑓 ∥2

2
(2)

The solution of the LLS is used to obtain the next state esti-

mation 𝑋 (𝑘+1) = 𝑋 (𝑘 ) ⊕ Δ, where ⊕ denotes the retraction

operation over the optimization manifold.

The most common approach to solving Equation (2) is the

normal equations, which solve the linear system 𝐽𝑇 𝐽Δ = 𝐽𝑇 𝑓 .

𝐽 is the Jacobian matrix, 𝐻 = 𝐽𝑇 𝐽 is the Hessian matrix, and

𝑔 = 𝐽𝑇 𝑓 is the gradient vector. Since 𝐻 is symmetric positive

definite, we take the Cholesky factorization 𝐻 = 𝐿𝐿𝑇 , for a

lower triangular Cholesky factor 𝐿. Then the solution Δ can

be obtained after two efficient triangle solves 𝐿𝑦 = 𝑔 and

𝐿𝑇Δ = 𝑦.

3.2 Partial Factorization
The Hessian matrix 𝐻 is an unstructured sparse matrix,

whose Cholesky factor 𝐿 can be represented as an elimi-

nation tree [33]. For efficient computation, each vertex in the

tree represents a supernode, a set of columns in 𝐿 that have

the same nonzero pattern. The Cholesky factorization of 𝐻

can then be described as performing the partial factorization

of each supernode from leaf to root [15]. For the remainder of

this paper, we will use node and supernode interchangeably.

The frontal matrix representation of the node 𝑗 is 𝐻 𝑗 =[
𝐴 𝐵𝑇

𝐵 𝐶

]
∈ R(𝑚+𝑛)×(𝑚+𝑛) . Because columns in the node all

share the same row indices, 𝐻 𝑗 is stored as a dense matrix

with an auxiliary row index vector. The high-level goal of

the partial factorization is to compute 𝐿 𝑗 =

[
𝐿𝐴 0

𝐿𝐵 𝐿𝐶

]
. Only

the first 𝑚 columns strictly belong to the node, while 𝐿𝐶
is a temporary matrix used to update subsequent columns.

A common implementation in high-performance software

is to perform the partial factorization of 𝐻 𝑗 in a temporary

workspace (frontal workspace), and copy

[
𝐿𝐴
𝐿𝐵

]
to a sepa-

rate memory location. Figure 4 shows the two equivalent

representations (matrix, tree) of the Cholesky factor 𝐿.

Hessian Construction. Instead of materializing 𝐻 in full,

it is more efficient to construct 𝐻 𝑗 before factorizing node

𝑗 . Let 𝐻 ′𝑗 be the symmetric frontal matrix of node 𝑗 before

Hessian construction, whose lower triangular half is stored.

We need to compute 𝐻 𝑗 = 𝐻 ′𝑗 +
∑

𝑖∈𝑆 𝑗
𝐽𝑇𝑖 𝐽𝑖 , for all the 𝐽𝑖 that

belong to this node. 𝐽𝑖 is the linearized form of the factor

𝜙𝑖 , and is typically a very sparse block-row in 𝐽 . Hessian

construction is therefore made up of a series of small GEMM

and scatter-addition, shown in Figure 5 (top).

Cholesky Factorization. Computing 𝐿 𝑗 from 𝐻 𝑗 involves

three steps, which is also described in Figure 5 (bottom).

1. Compute the dense Cholesky factor 𝐴 = 𝐿𝐴𝐿
𝑇
𝐴

2. Do a triangle solve on the subdiagonal block 𝐿𝐵𝐿
𝑇
𝐴
= 𝐵

3. Perform a symmetric rank-𝑘 update 𝐿𝐶 = 𝐶 − 𝐿𝐵𝐿𝑇𝐵
Merge. Let node 𝑗 +1 be the parent node of 𝑗 . We update the

parent frontal matrix with 𝐿𝐶 . The row indices of 𝐿𝐶 are a

strict subset of the row indices of 𝐻 ′𝑗+1; therefore, the entries
of 𝐿𝐶 need to be scattered into 𝐻 ′𝑗+1.

3.3 Non-Numeric Operations
In Section 3.2, we describe the numeric operations for solv-

ing the LLS problem. For simplicity, we will refer to the

operations required to set up the problem as non-numeric
operations (regardless of the actual computation), which also

contribute to the end-to-end latency.

Symbolic Factorization. Before the numeric factorization,

the nonzero pattern of the Cholesky factor 𝐿 is computed

and the required memory for the matrix entries is allocated.

Relinearization. The Jacobian matrix 𝐽 is the first deriva-

tive of𝜙 evaluated at𝑋 . Therefore, a block-row 𝑖 is computed

as the linearization of the factor 𝐽𝑖 = 𝐽𝜙𝑖
(𝑋 ). Each factor is

independent, thus it is trivially parallelizable.

Figure 3 shows the full backend run-time breakdown for

a large-scale AR dataset on an out-of-order CPU. Since the

numeric operations are dominant, SuperNoVA focuses on

numeric acceleration, and runs non-numeric parts on CPU.
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3.4 Incremental Smoothing and Mapping (ISAM2)
ISAM2 is an incremental NLS solver that achieves high accu-

racy at each step, usually with a very low amount of compu-

tation. This is enabled by a technique called fluid relineariza-
tion, which evaluates 𝐽 at a linearization point (LP) Θ instead

of at the current state estimate 𝑋 . LP is the state estimate at

which the Jacobian matrix is evaluated. A component Θ𝑗 is

only updated to 𝑋 𝑗 if the step size of that variable is large

enough, i.e. ∥Δ 𝑗 ∥∞ > 𝛽 for some small constant 𝛽 .

A factor 𝜙𝑖 is usually associated with a very small set

of states. If any of these states updated their LPs, then 𝐽𝑖
must be re-computed. All nodes associated with 𝐽𝑖 must be

re-factorized, along with all of their ancestors. On a non-

loop-closure frame, most updates occur towards to root of

the tree, leading to a small computation cost. Conversely, a

loop closure frame updates a node deep in the tree, causing

a large update. This is the main source of latency variability

in incremental SLAM, which SuperNoVA tackles with its

resource-aware algorithm.

4 SuperNoVA System
SuperNoVA is a complete full-stack system for the SLAM

backend computation in which algorithm and hardware are

co-designed to process large-scale SLAM workloads under

resource constraints. As Figure 1 shows, SuperNoVA is com-

posed of 1) a resource-aware algorithm that dynamically

constructs the most relevant sub-problem that fits within

the target deadline while maintaining accuracy, 2) a runtime

system that allocates multi-accelerator compute resources

to the supernodes of the tree graph by exploiting different

types of parallelism, and 3) a hardware architecture that

accelerates the real-time SLAM backend efficiently with pro-

grammable accelerators for sparse matrix computation and

dynamic memory management.

This section discusses in the order of the SuperNoVA al-

gorithm, hardware architecture, and the runtime system.

4.1 SuperNoVA Algorithm
We propose Resource-Aware Incremental Smoothing and

Mapping (RA-ISAM2), a novel incremental SLAM algorithm

that dynamically adjusts the algorithm complexity based on

available system resources and target deadline. RA-ISAM2

builds upon ISAM2 by leveraging the incremental partial

updates for resource-awareness. This approach addresses

the variable latency issue in ISAM2 by modifying the relin-

earization conditions for variables. We define the relevance
score of a variable 𝑗 as the size of the update step ∥Δ 𝑗 ∥∞,
which represents the optimal update of the variable from

its LP. A larger distance from LP implies that the Jacobian

matrices associated with that variable have higher errors.

Instead of checking for ∥Δ 𝑗 ∥∞ > 𝛽 , we estimate the cost

of relinearization and only update Θ𝑗 if it does not violate

Algorithm 1 Compute relinearization cost of a variable

1: function ComputeRelinCost(candidate_variable)

2: affected_variables← all variables that share a factor

with candidate_variable

3: relin_cost← 0

4: for variable in affected_variables do
5: relin_cost += ComputePathCost(variable.node)

return relin_cost

6: function ComputePathCost(start_node)

⊲ % Traverse up the tree and compute the latency cost

of each node until a previously visited node %

7: node← start_node

8: while node != root and !node.visited do
9: node.visited = True

10: node.cost = ComputeNodeCost(node)

11: end_node = node

12: node = node.parent

⊲ % Traverse down and compute each path cost%

13: end_node.path_cost = end_node.cost

14: for node from end_node to start_node do
15: node.path_cost = node.cost + parent.path_cost

return start_node.path_cost

the target deadline. A greedy algorithm is used so that vari-

ables with high relevance scores are considered first. The

intuition is that variables that are farther away from their

linearization points cause more inaccuracies in the state esti-

mation. By only selecting the most relevant variables at each

step, we can amortize the cost of loop closure over several

steps, where each step has an acceptably high accuracy while

meeting the latency target.

Algorithm 1 shows the procedure to estimate the cost of

relinearizing a variable. Selecting a variable affects all the

variables it shares a factor with (line 2), causing an update to

the corresponding nodes and their paths to the root. Thus,

the cost of relinearizing a variable is the sum of the cost of

all updated paths. For each path, Lines 7-10 first compute the

cost of each node individually, accounting for the latency of

both numeric and non-numeric operations. Lines 13-15 tra-

verse down the tree and sum up the path cost for each node,

which is returned as the estimated relinearization cost. If it is

less than the remaining processing time, the variable will be

selected for relinearization and the cost is subtracted from

the remaining time. The path cost of each node is cached

so that the cost estimation step can be shortened if it en-

counters a repeated node. Thus, the overhead of the adaptive

relinearization algorithm is at most two visits per node.

4.2 SuperNoVA Hardware
Figure 6 describes the SuperNoVAhardware SoC architecture.

SuperNoVA hardware provides a scalable, multi-core, multi-

accelerator architecture for large-scale SLAM problems. SoC

components, including the accelerator configuration and the
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Figure 6. SuperNoVA hardware architecture.

number of accelerators and CPU tiles, are all configurable at

design time. It consists of two types of programmable acceler-

ators, the compute accelerator (COMP) to accelerate matrix

operations in SLAM and the memory accelerator (MEM) to

perform efficient memory operations for workspace-based

algorithms.

In large-scale, real-time SLAM, the sparse matrix struc-

ture updates at each step, which incurs a large overhead in

sparse index management and dynamic memory allocation.

To address this, SuperNoVA adds a new sparse indexing unit

to handle block-sparse matrix scatter to COMP. The MEM

is dedicated to memory-management tasks, such as memset

and memcpy to nodes, to facilitate the dynamic management

of sparse matrices, crucial for dynamic large-scale SLAM.

The accelerators are shared across different operators and

are applicable to other linear algebra algorithms. The accel-

erator instances are decoupled from the controller CPU and

can be duplicated across the SoC interconnect, allowing the

CPU to flexibly virtualize and orchestrate multiple acceler-

ators (see Section 4.3). The disaggregated accelerators and

CPU tiles share the last-level cache (LLC).

4.2.1 Compute accelerator. As most of the numerical op-

erations are GEMM (Figure 3), we build the compute acceler-

ator (COMP) on top of a general matrix accelerator, depicted

in Figure 6 as the Compute Accelerator Tile. The transposer

allows either of the matrix operands to be transposed. The

local scratchpad memory performs double-buffering to mini-

mize load and store overhead. The programmable scaler units

scale the operands when loading into the local scratchpad.

COMP also implements the Sparse Index Unroller (SIU)

for efficient small block matrix scatter, used in Hessian con-

structions and merge. SIU calculates the operand and output

sparse block addresses by referring to the sparse block in-

dices. Calling the accelerator on each small block addition

places a high overhead on the CPU, which may cause the

operation to be bottlenecked by the instruction fetch band-

width. SuperNoVA leverages the SIU to pack multiple block

additions into a single instruction, which frees the CPU from

computing addresses and fetching instructions for each small

block operation sharing consecutive sparse row indices. For

blockmatrix addition, COMP’s partial sum accumulator logic

is reused to minimize area overhead.

4.2.2 Memory accelerator. The lightweight memory ac-

celerator (MEM) is shown as the Memory Accelerator Tile

in Figure 6. In online SLAM, the elimination tree structure

is determined on the fly. As such, the memory space needs

to be dynamically allocated and managed during run-time,

requiring a substantial number of memory operations. Thus,

MEM is crucial for offloading operations such as memcpy

and memset from the CPU to solve dynamic problems effi-

ciently. Memcpy is used to prefetch small factors for efficient

Hessian construction and to copy the supernodes during

Cholesky. The memset acceleration is used for resetting the

frontal workspace for each node. The DMA can track multi-

ple in-flight memory requests, out-of-order responses, and

burst memory transactions for high memory bandwidth uti-

lization. MEM implements multiple DMA virtual channels

(VC) that effectively share the DMA logic and queue. This

allows the CPU to offload different memory requests with

varyingmemory access patterns concurrently by configuring

each channel differently as if it has access to different DMAs

with minimal logic overhead. The VC has configuration reg-

isters for source and destination strides, allowing flexible

strided memory accesses. The MEM’s custom ISA provides

fine-grained control over the VC’s configurations such as

base addresses, strides, and dimensions. The decoder decodes

the instruction type and either configures the VC registers

or sends load and store requests to the request queue, which

pops out when the DMA core is free for a new request. The

prober checks the DMA for the status of each VC, so that the

CPU can resolve dependencies before fetching dependent

compute instructions.

4.2.3 Accelerator integration. SuperNoVA integrates the

accelerator using the remote RoCC (ReRoCC) accelerator in-

terface, which disaggregates the accelerators from the core

for scalable virtual integration while maintaining the illu-

sion of core-accelerator tight-coupling to provide ease of

programmability [29]. This integration methodology is suit-

able for SLAM acceleration, as it provides a low-latency

interface for accelerator calls for small operations, such as

small factor multiplication, and for flexible partitioning of

virtualized accelerators to provide both inter- and intra-node

parallelism. It is also a low overhead interface, beneficial

for area-constrained design. Its microarchitecture blocks are

shown as ReRoCC Client and Manager in Figure 6.

4.3 SuperNoVA Runtime
The SuperNoVA runtime manages multiple accelerators to

enable a scalable system for large-scale SLAM. The runtime

takes the elimination tree as an input from the SuperNoVA al-

gorithm on each time step. It allocates accelerator resources
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Algorithm 2 SuperNoVA accelerator allocation

⊲ Functions: GetParent (gets parent node of the node)
1: ChildrenDone (check if all child nodes are merged)

⊲ Lists: Accels (accelerators in the system)

2: ACQ (acquired virtualized accelerators each thread)

3: NodeQueue (Supernodes ready to be computed)

4: MEMspace (Workspace size usage of each thread)

⊲ Inputs: 𝑇 (tree), 𝑗 (supernode), 𝜔 (this thread)

⊲ Outputs: Decision of accelerator usage

5: Function calc_space(node):

⊲ %Computes the workspace usage of the node%

6: H← min(total_factor_size, H_workspace_size)
7: F← node_height

2

8: next_F← GetParent(node).node_height
2

9: return (H + F + next_F)

10: while NodeQueue.len > 0 do
11: 𝑗 ← NULL

12: for q in len(NodeQueue) do
13: 𝑗 ← NodeQueue[q]

⊲ % Determine if the selected node fits in LLC%

14: mem_usage← sum(MEMSpace)+calc_space( 𝑗)
15: if mem_usage < Shared LLC size then
16: NodeQueue.pop(q)

17: break
18: if 𝑗 is NULL then

⊲ % Release accelerators so other threads can use %

19: release(ACQ𝜔 ) && ACQ𝜔 .pop()

20: Continue
⊲ % Acquire available accelerators %

21: acquire(Accels.idle) && ACQ𝜔 .push(Accels.idle)

22: runNode( 𝑗 ) && NodeQueue.popNode( 𝑗 )

23: if ChildrenDone(j.Parent) then
24: NodeQueue.push(j.Parent)

and calls them according to the identified parallelism, while

abstracting hardware acceleration and programming com-

plexity from the application thread through virtualization.

In addition, it provides an accurate model to estimate the

computational cost of each node, which the SuperNoVA al-

gorithm uses to select an appropriate subtree to compute. In

order to run in real-time, the runtime system is designed to

be lightweight and operate in userspace.

4.3.1 Accelerator resource allocation. As the real-time

sensor measurements are unpredictable, the structure of the

elimination tree is determined at run-time; thus, computa-

tional resources need to be allocated dynamically. Given a

subtree to compute, the runtime constructs a ready queue of

supernodes on the fly. The runtime identifies and harnesses

parallelism in the elimination tree, and allocates hardware re-

sources accordingly. Algorithm 2 describes the procedure for

a thread to acquire an available node from the node queue.

The elimination tree has many independent small nodes

near the leaves, and less near the root, where branches con-

verge. When processing the leaves, the runtime identifies

inter-node parallelism across branches and allocates a dif-

ferent node to each thread to efficiently utilize thread-level

parallelism. The runtime constructs a working NodeQueue

that exposes a node for scheduling when all its dependent

children nodes are processed and merged in. Inter-node par-

allelism is achieved by allowing each thread to access the

NodeQueue for the next ready node (Line 13).

When the node size becomes larger, processing multiple

nodes concurrently will cause the active workspace to ex-

ceed cacheable memory size. Pursuing maximum inter-node

parallelism in this case causes cache thrashing. To avoid this,

the runtime allows concurrent node processing up to the

point where all the concurrent node’s workspace can fit into

the shared LLC (Lines 14-17). If there are no available nodes

that fit into the remaining LLC space or a lack of paralleliz-

able branches, then the runtime de-schedules the thread, and

releases the accelerators to let other threads acquire its ac-

celerators to process bigger nodes close to the root (Lines

18-20). SuperNoVA exploits inter-node parallelism efficiently

by partitioning the operations across multiple accelerators.

4.3.2 Heterogeneous accelerator orchestration. The
SuperNoVA runtime virtualizes and orchestrates heteroge-

neous accelerator resources. The memory operations such as

workspace initialization and data movement can be exposed

as performance overheads if they are not masked under

compute operations. The runtime rearranges the accelerator

operations strategically, by overlapping memory operations

with compute tasks that are independent to the memory

operation and offloading the memory tasks to MEM before

calling COMP. The parallelism between heterogeneous accel-

erators perfectly hides the memory latency behind compute

operations, increasing the hardware utilization and eliminat-

ing performance overhead due to workspace management.

4.3.3 Node cost computation. The SuperNoVA runtime

provides an estimated processing time of a supernode, which

allows the algorithm to select an appropriate subtree to up-

date at each step, as it abstracts the hardware layer from

the algorithm. As SuperNoVA offloads most of the numeric

operation to accelerators, the runtime can estimate the node

computational cost by considering multi-level memory hier-

archy, number of PEs, and node dimensions similar to [28].

By providing insights into the compute overhead, the run-

time empowers the algorithm to construct a subtree to meet

the SLAM real-time requirement.

5 Methodology
This section details SuperNoVA’s implementation, together

with the workloads and metrics used for our evaluation.
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Table 3. SoC configurations used in the evaluation.

Parameter Value
# of COMP tiles 1-4

Systolic array dimension (per tile) 4x4

Scratchpad/Accumulator size (per tile) 32KB/16KB

# of MEM tiles 1-4

Virtual channels (per tile) 4

# of CPU tiles 1-4

ReRoCC L2 TLB entries 256

ReRoCC PTW cache size 2KB

Shared L2 (size / banks) 4MB, 8

DRAM bandwidth 64GB/s

Frequency 1GHz

5.1 SuperNoVA Implementation
We implement the SuperNoVA hardware architecture using

the Chisel HDL [6]. We build COMP on top of the Gem-

mini [18] infrastructure, which is a systolic-array-basedGEMM

accelerator, by adding a sparse index unroller (SIU). To gen-

erate the SoC, we use the Chipyard [3] SoC framework,

an open-source framework for designing and evaluating

SoCs. We evaluate SuperNoVA’s performance by running

our SLAM backend workloads on FireSim, a cycle-exact,

FPGA-accelerated, RTL simulator [27]. We also synthesize

SuperNoVA hardware on a commercial 16nm technology

process for area and power evaluation.

Table 3 shows the SoC configuration used in the evalua-

tions. We demonstrate SuperNoVA with different numbers

of accelerator sets (COMP+MEM), 1, 2, and 4. Each COMP

and MEM accelerator is individually integrated to a ReRoCC

Manager, andmultiple sets of accelerators can be instantiated

on the same SoC. Each COMP is equipped with a floating

point 32-bit precision 4x4 weight-stationary systolic array.

Each MEM has 4 DMA VCs, and it can track 8 in-flight burst

transactions. All the tiles share the LLC memory subsystem.

The SuperNoVA algorithm and runtime are implemented

in C/C++ and run on top of a full Linux stack. The runtime

uses a lightweight software look-up table to track which

thread is active and the current accelerator allocation. The

runtime also implements the supernode queues, which track

the supernodes that are ready to be processed.

5.2 Workloads
SuperNoVA is evaluated on large-scale pose graph datasets:

1. M3500: 3.5K steps, 5453 edges

2. Sphere: 2K steps, 3951 edges

3. CAB1: 464 steps, 2287 edges, 1800 m2
range

4. CAB2: 3K steps, 15144 edges, 6000 m
2
range

The Sphere dataset (Figure 7a) and M3500 are synthetic

pose graph datasets with many loop closures [12]. We choose

large-scale synthetic datasets with different sparsity charac-

teristics to show SuperNoVA’s effectiveness across different

environments. Sphere is a dense dataset with high rotational

noise and larger supernodes, while M3500 is a sparse dataset

with many small supernodes. The CAB datasets (Figure 7b)

are part of the LaMAR, a large-scale dataset collected by AR

devices in diverse environments [46]. CAB2 is constructed

by concatenating multiple AR sessions to form an extremely

long pose trajectory, where the factors between poses are

determined by the covisibility of a common landmark. To

simulate a system running online SLAM, a new pose is added

at each step, along with all the associated factors.

5.3 Metrics
To showcase the resource- and target-aware execution of

SuperNoVA, we measure the latency at each step of the work-

load to demonstrate that SuperNoVA meets real-time SLAM

requirements. We also evaluate the accuracy of the estimated

trajectory and show that SuperNoVA’s is capable of main-

taining accuracy over a long duration.

Latency. We measure the latency of the full SLAM back-

end including relinearization, symbolic factorization, and

the subtree selection algorithm for RA-ISAM2, on top of the

numeric factorization, and compare it to the target process-

ing latency for each step. To match the camera frame rate,

we set the target processing rate to 30FPS, which implies a

latency target of 33.3ms.

Accuracy. We use the Python package evo to find the maxi-

mum translation error (MAX) and the root mean square error

(RMSE) of an estimated trajectory 𝑋 against a reference tra-

jectory𝑋𝑟𝑒 𝑓 [20]. In online SLAM, it is important to measure

the error at each timestep, not just over the entire trajectory.

Therefore, we also measure the incremental RMSE (iRMSE)

[35] , where

iRMSE =
∑︁
𝑘

[
𝑘∑
𝑘

RMSE(𝑋 (𝑘 ) , 𝑋 (𝑘 )
𝑟𝑒 𝑓
)
]

(3)

The reference trajectories are obtained by optimizing repro-

jection error until convergence at each step.

5.4 Hardware Baselines
To evaluate the efficiency of SuperNoVA hardware accelera-

tion, we compare its latency against six hardware baseline

platforms running the same incremental SLAM (ISAM2).

1. BOOM: An out-of-order (OoO) superscalar RISC-V

core with performance comparable to ARM Cortex

A72-like cores [53]. The system setup is the same as

SuperNoVA (memory subsystem, frequency, etc.).

2. Mobile CPU: ARM Cortex A72 core [4] (1.5GHz) on

a commercial Raspberry Pi4 [43].

3. Mobile DSP: Neon SIMD unit [5] with Mobile CPU

4. Server CPU: Server class Intel Xeon E5-2643 proces-

sor (3.5GHz).
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Figure 7. Groundtruth trajectories of our datasets. The thin

black lines indicate factors between poses.

5. Embedded GPU: NVIDIA Maxwell GPU [40] on the

commercial Jetson Nano [39], using the cuSparse and

cuSolver libraries [37, 38] to run an incremental solver.

6. Spatula [16]: Prior work that accelerates static matrix

factorization. Uses vanilla matrix accelerators. The

system setup is the same as SuperNoVA (CPU,memory

subsystem, frequency, etc.).

As shown in Section 6.4, one BOOM has a comparable area

to two Rocket CPUs and two sets of SuperNoVA accelerators

(COMP + MEM). Thus, we use 2 sets of SuperNoVA accel-

erators to show the efficiency of the SuperNoVA hardware

compared to the baselines on Section 6.1.

To show how SuperNoVA’s resource-aware algorithm ac-

commodates different resource availabilities on Section 6.2,

we compare the algorithm for different numbers of Super-

NoVA accelerator sets, 1/2/4 sets, to the incremental baseline

running on the same hardware and runtime.

5.5 Algorithm Baselines
To evaluate the efficiency of SuperNoVA’s resource-aware

algorithm, we compare against the following baselines:

1. Local: We use VIO, a fixed-lag smoother with a win-

dow size of 20 [24]. Factors outside of the sliding win-

dow are discarded. The oldest pose is marginalized.

2. Local + Global: This represents a multi-level SLAM

system with a local solve and an LC solver. The LC

solver only runs when a loop is detected. When the

LC solver is done, its estimate is used to correct the

local solver.

3. Incremental: ISAM2 backendwith a fixed relineariza-

tion threshold. A well-known optimization for this

is to take one Gauss-Newton step in each backend

iteration, instead of iterating until convergence [44].

To evaluate the effectiveness of RA-ISAM2 and its ability

to accommodate varying levels of resource availability, we

compare the accuracy of the resource-aware algorithm (RA)

across different configurations: using 1, 2, and 4 SuperNoVA

accelerator sets (RA1S, RA2S, and RA4S). These results are

compared against baseline configurations, as well as across

the different RA setups, to demonstrate how the algorithm

scales with available resources while maintaining accuracy.

Furthermore, we conduct an ablation study by replacing

SuperNoVA hardware with a server CPU (RACPU). This al-

lows us to isolate the performance impact of SuperNoVA’s

specialized accelerators and evaluate how the resource-aware

algorithm performs when relying on general-purpose hard-

ware, providing insight into the benefits of the hardware-

accelerator co-design.

6 Evaluation
In this section, we evaluate the ability of SuperNoVA to pro-

cess the full SLAM backend in real-time by comparing it to

different compute platforms and existing SLAM methods.

The first part of the evaluation shows that SuperNoVA hard-

ware improves SLAM processing latency over existing com-

pute platforms. The second part demonstrates that through

co-designing algorithm and hardware, SuperNoVA achieves

better accuracy than existing SLAM backends, while guar-

anteeing to meet target processing latency.

6.1 Latency Analysis
We first evaluate the latency to show SuperNoVA’s efficacy in

accelerating SLAM backend, by comparing its processing la-

tency with the existing hardware platforms when processing

the same incremental baseline. In this evaluation, SuperNoVA

hardware refers to SuperNoVA hardware and runtime.

SuperNoVA hardware accelerates SLAM backend better
than CPU baselines. Figure 8 demonstrates that Super-

NoVA’s acceleration outperforms the baseline compute plat-

forms. Compared to BOOM, SuperNoVA hardware achieves

90.7%/54.4%/93.3%/89.5% (Sphere/M3500/CAB1/CAB2) latency

reduction for end-to-end SLAM backend (Total). SuperNoVA

consistently outperforms commercial Mobile CPU to a simi-

lar degree as well. Even compared to server-class CPU, Su-

perNoVA hardware achieves better processing latency. For

the numeric part (Numeric), SuperNoVA hardware achieves

87.4%/1.8%/81.4%/76.8% latency reduction compared to the

server CPU. The lower speedup on M3500 can be explained

by the higher sparsity and smaller supernode sizes due to the

graph structure of the dataset, leading to decreased accelera-

tor utilization while a powerful server CPU is less impacted.

In terms of end-to-end latency, SuperNoVA hardware shows

65.5% (Sphere), 63.9% (CAB1), 43.9% (CAB2) reduction, while

for M3500, SuperNoVA’s latency is 3× compared to server

CPU. M3500 has a high number of relinearized variables

per step, resulting in a higher relinearization cost on an in-

order CPU. However, AR datasets, CAB1 and CAB2, and

Sphere, which is a dense dataset with a lot of big LCs, show

significant improvement across all class CPUs.
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Figure 8. Latency comparison of 2 sets of SuperNoVA hardware with the baselines on 4 different benchmarks running

incremental baseline (ISAM2). The Y-axis is normalized by BOOM’s latency.

SuperNoVA hardware is more efficient in accelerating
the numeric than other compute units. Compared toMo-

bile DSP, SuperNoVAhardware shows 83.9%/21.7%/79.5%/73.4%

(Sphere/M3500/CAB1/CAB2) latency reduction in total, and

94%/76.9%/89.3%/88.8% for numeric. SuperNoVA’s matrix-

based compute engine is more powerful than SIMD when

processing numeric operations as most of the operation can

be mapped to BLAS-3. The efficiency is more pronounced in

denser and larger problems, Sphere and CAB2. Compared to

EmbeddedGPU, SuperNoVA achieves 66.2%/0.9%/88.4%/78.6%

latency reduction in total, and 86.7%/69.4%/94.1%/91.2% for

numeric. GPU particularly performs poorly on CAB1, in that

it shows similar latency to Mobile CPU and 1.77× longer

latency than Mobile DSP in total. This is due to the initial

memory load cost being more pronounced in small problems,

which is not the case in SuperNoVA hardware as its com-

pute accelerator efficiently interleaves computational and

memory load to its internal scratchpad memory. In addition,

COMP’s matrix-based computation unit is more efficient

than GPU for highly GEMM-based Cholesky operation.

SuperNoVA’s algorithm-aware hardware co-design is
efficient. Compared to Spatula baseline, SuperNoVA hard-

ware achieves 84.2% (Sphere), 68.6% (M3500), 84.2% (CAB1),

81.2% (CAB2) latency reduction for numeric. This improve-

ment indicates the significance of algorithm-aware accelera-

tor co-design. Spatula can accelerate the matrix factorization

efficiently using its GEMM accelerator, but it is missing opti-

mizations for other key components of the end-to-end dy-

namic operation, such as memory management operations

and Hessian construction. As SLAM is a dynamic problem

that the pose graph of each step is decided during run-time,

each supernode’s memory space and workspace needs to

be dynamically managed. SuperNoVA addresses these chal-

lenges through its dedicated MEM for memory management

tasks and the sparse indexing unit integrated to COMP. These

specialized hardware components lead to substantial perfor-

mance gains over Spatula’s GEMM-only approach. The gain

is more pronounced in the datasets with larger nodes, which

require long latency memory management operation, thus

showing higher improvement on Sphere and CAB bench-

marks than M3500.
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Figure 9. Latency improvement by enabling SuperNoVA

runtime parallelism.

SuperNoVA runtime’s parallelism optimizations en-
able scalablemulti-accelerator approach. Figure 9 shows
the numeric’s latency improvement by gradually enabling

SuperNoVA’s runtime optimizations on the Sphere and CAB2

datasets. Enabling parallelism between different accelerators,

COMP and MEM, achieves 15.3%/11.4% (Sphere/CAB2) re-

duction from single-threaded no parallelism case. The larger

supernode sizes in Sphere allow more overlapping of the

memory management overhead through heterogeneous ac-

celerator orchestration. Enabling inter-node parallelism de-

creases the latency by 35.8%/37% (Sphere/CAB2), by process-

ing the branches of the elimination tree in parallel. Finally,

enabling intra-node parallelism brings in a further 12.5%/8.6%

(Sphere/CAB2) latency reduction. The improvement comes

from parallelizing within large nodes near the root of the

tree where there are few branches. This speedup is more

pronounced for Sphere due to the larger node sizes.

6.2 Real-time Analysis
We evaluate SuperNoVA’s resource-aware relinearization

variable selection, by comparing SuperNoVA’s RA-ISAM2

and the incremental algorithm running on same SuperNoVA

hardware and runtime.We use 3 different SoC configurations

by varying the accelerator resources, 1/2/4 sets, to show Su-

perNoVA’s adaptiveness under different resource constraints.

SuperNoVA’s resource aware algorithm improves the
target satisfaction rate of SLAM backend. Figure 10

demonstrates the latency comparison between SuperNoVA
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Figure 10. Latency comparison of incremental baseline (ISAM2) and SuperNoVA algorithm (RA-ISAM2) running on SuperNoVA
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Figure 11. Execution time breakdown of end-to-end backend

latency. (2/4Sets: 2/4 sets of SuperNoVA accelerator)

and the incremental baseline running on the same Super-

NoVA SoC. All steps, including outliers, are included to

provide a comprehensive view of performance variability.

Resource-aware SuperNoVA consistently meets the 33.3ms

target required for real-time processing under different re-

source availabilities across all benchmarks, whereas the in-

cremental baseline fails to meet the deadline by 68%, 40%,

23% (1/2/4 sets) for Sphere, 53%, 30%, 13% for M3500 and 11%,

4%, 2% for CAB2. This demonstrates SuperNoVA algorithm’s

ability to select a subgraph to update that fits within the tar-

get deadline. Both incremental and SuperNoVA algorithms

always meet the timing for CAB1. However, the average

latency has increased for SuperNoVA as its algorithm will

select more relinearization variables than the baseline when

latency allows, which benefits the accuracy as Table 4 shows.

SuperNoVA effectively selects variables to relinearize
based on available resources. Figure 11 breaks down the

latency of the incremental baseline and SuperNoVA algo-

rithm into relinearization, symbolic, numeric, and Super-

NoVA algorithm overhead, for CAB2 and M3500. For CAB2,

incremental shows high latency spikes in some of the steps

that have LC events, which leads to relinearizing and refac-

torizing most of the elimination tree. However, SuperNoVA’s

resource-aware algorithm amortizes the LC cost across mul-

tiple steps, which helps meeting the target deadline while

making sure the important updates are done in time. Simi-

larly, for M3500, SuperNoVA algorithm dynamically selects

the important variables to relinearize, which greatly reduces

the relinearization cost. In both datasets, the increase from

2 accelerator sets to 4 increases the symbolic costs as the

selected subtree size increases with more compute resources.

This, in turn, boosts the accuracy (Section 6.3). Despite this

increase in computational load, RA-ISAM2 maintains sim-

ilar latency close to the target by dynamically adjusting

the workload based on the available hardware resources. It

always performs the maximum possible work within the

target latency when hardware resources are constrained.

Overall, SuperNoVA’s variable selection algorithm imposes

minimal overhead of 0.1%/0.9% (M3500/CAB2) on average

which shows SuperNoVA algorithm is scalable to large-scale

problems.

6.3 Accuracy Analysis
We run the dataset on each SLAM algorithm and measure the

maximum pose error and RMSE at each step. We use 3 differ-

ent existing SLAM configurations, Local, Local+Global, and

incremental (In), and compare them against our proposed

resource-aware algorithm (RA) with 3 SoC configurations,

1, 2, 4 SuperNoVA accelerator sets (RA1S, RA2S, RA4S). We

also conduct a hardware ablation study with server CPU

(RACPU). The summary of the results is shown in Table 4

while the errors for each step are shown in Figure 12. The

incremental baseline at each step represents the idealized

SuperNoVA algorithm with infinite compute.

The SuperNoVA algorithm achieves high accuracy de-
spite the latency and resource constraints, demonstrat-
ing viability for large-scaleARapplications. The resource-
aware methods generally outperform the baseline SLAM

methods for both MAX and iRMSE. Compared to the Lo-

cal+Global baseline, RA4S reduces the MAX and the iRMSE

by 93% and 85% for Sphere, 84% and 99% and 99% for M3500,

96% and 95% for CAB1. For CAB2, RA4S reduces the MAX

by 89% and is close to both Local+Global and the ideal incre-

mental baseline for iRMSE. Figure 12 further illustrates this
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Table 4. Accuracy comparisons of the baseline algorithms

(Local, Local+Global, In) and the resource-aware algorithms

(RA) with different hardware configurations (CPU, 1/2/4S).

Upper row is MAX, lower row is iRMSE. Error unit: meter

Local

Local+

Global

RA

CPU

RA1S

(Ours)

RA2S

(Ours)

RA4S

(Ours)
In

Sphere

213.62 47.42 31.28 7.53 4.81 3.09 2.36

95.64 1.57 3.96 1.39 0.54 0.22 0.20

M3500

97.05 19.02 0.29 1.29 0.31 0.05 3.61e-3

43.13 0.41 2.20e-2 0.13 3.1e-2 3.14e-3 7.02e-4

CAB1

0.27 6.11e-2 1.76e-3 1.51e-3 2.00e-3 2.25e-3 1.49e-2

2.70e-2 4.31e-3 1.97e-4 1.46e-4 2.17e-4 2.04e-4 3.07e-3

CAB2

4.77 2.16 1.9 0.74 0.45 0.22 0.39

1.36 0.05 0.56 0.17 0.12 0.06 0.10
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Figure 12. The maximum and RMS error at each step com-

pared to a fully optimized reference trajectory.

effect. A sliding window Local will ignore loop closure (LC)

events to maintain a fixed latency, inducing a large drift over

time. Even though Global’s LC solver can correct the error,

the LC latency causes the correction to lag behind the error

spike. By the time the Global unit fully optimizes the error,

the system may have already entered an unrecoverable state

of failure. Compared to the RA1S and RA2S, RA4S shows 84%

and 59% reduction in iRMSE for Sphere (58%, 35% in MAX)

and 64% and 50% reduction for CAB2 (70%, 51% in MAX),

demonstrating the scalability of our approach. While Su-

perNoVA successfully maintains accuracy by amortizing LC

costs, its scalability is not infinite. Section 7 further discusses

this limitation.

SuperNoVA accelerator enhances accuracy, highlight-
ing the importance of its algorithm-hardware co-design.
We performed an ablation study comparing RACPU with

SuperNoVA hardware to evaluate the impact of hardware

acceleration on SLAM accuracy. While the resource-aware

algorithm guarantees meeting the target deadline, the CPU’s

limited compute capabilities lead to lower accuracies. In con-

trast, SuperNoVA’s powerful hardware acceleration allows

Table 5. Area breakdown of SuperNoVA hardware.

Component Area ( 𝜇m2) % of Area
Rocket CPU tile 151K 100%

COMP tile 301K 100%

ReRoCC Manager 20K 6.6%

Accelerator 281K 93.4%

Mesh 92K 30.6%

Scratchpad+Accumulator 86K 28.6%

Sparse Index Unit 9K 3.1%

MEM tile 51K 100%

ReRoCC Manager 20K 39.2%

Accelerator 31K 60.8%

Total (CPU tile+Accelerator tiles) 504K 40%

BOOM baseline 1262K 100%

for more updated variables within the target latency, result-

ing in significantly reduced errors. For the Sphere dataset,

RACPU experiences a 6.5× and 10× increase in MAX, and

a 7.3× and 18× increase in iRMSE compared to RA2S and

RA4S respectively. Similarly, for CAB2, RACPU exhibits 4.2×
and 8.6× higher MAX and 4.7× and 9.3× higher iRMSE

than RA2S and RA4S respectively. M3500, however, is an

exception as it is an edge-case benchmark with high relin-

earization costs. These comparisons highlight the crucial

role of SuperNoVA hardware acceleration in achieving supe-

rior accuracy, demonstrating the necessity of SuperNoVA’s

algorithm-hardware co-design for large-scale SLAM tasks.

6.4 Physical Design and Area Analysis
We synthesize SuperNoVA hardware, with each SuperNoVA

accelerator integrated with ReRoCC Manager and Rocket

CPU integrated with ReRoCC Client [30] using Cadence

Genus with commercial 16nm process technology with the

configuration in Table 3. As shown in Table 5, the total area,

adding CPU, COMP and MEM tiles is 40% of BOOM’s area.

Thus, having two SuperNoVA accelerator sets with two CPUs

equals 80% of a single BOOM. This shows that SuperNoVA

hardware is an area-efficient solution for SLAM acceleration,

in addition to the benefit of real-time latency performance.

6.5 Power Analysis
We evaluated the power consumption of SuperNoVA us-

ing Cadence Joules and observed that it consumes 114mW

during its most power-intensive operation, the symmetric

rank-k update, on the Intel16 process, running at 1GHz and

0.8V. This power consumption is significantly lower than

the 5-10W consumed by embedded GPUs and the 2.5-5W

consumed by FPGA-based accelerators [34]. These results

highlight SuperNoVA’s efficiency in performing SLAM com-

putations while maintaining low power usage, making it

highly suitable for resource-constrained environments such

as AR/VR devices.
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7 Future Work
Although SuperNoVA efficiently solves large-scale SLAM

problems by distributing a large number of relinearization

variables across multiple steps to amortize LC costs and pre-

serve accuracy, its scalability is not infinite, as demonstrated

in the later steps of Figure 12b. When the history size grows

too large, updating variables deep in the history can lead to

timing violations. When this happens, SuperNoVA is forced

to exclude those variables, effectively "dropping" older sen-

sor measurements to meet timing constraints, which results

in a trade-off between accuracy and real-time performance.

A potential direction to address this limitation would be to

supplement SuperNoVA with an LC module running on a

base station or as a background process to handle older vari-

ables, similar to the VIO+LC baseline. This hybrid approach

would allow SuperNoVA to maintain its low latency and

high accuracy for real-time tasks on-device while offloading

deeper historical updates, thus further scaling the problem.

Additionally, this work does not yet optimize for power

constraints. However, the SuperNoVA algorithm could be

extended by integrating an energy cost model into the Su-

perNoVA runtime, enabling an energy-aware SLAM system.

Finally, SuperNoVA hardware is broadly applicable beyond

SLAM, particularly for applications that require floating-

point GEMM, such as those in robotics or vision process-

ing. The resource-aware algorithm can be applied to any

factor-graph-based optimization problem, including control

systems and other domains requiring similar optimization

approaches.

8 Conclusion
We introduce SuperNoVA, a full-stack algorithm-hardware

co-designed SLAM system, to address the challenges of state

estimation in AR/VR applications. By adaptively selecting

updated subtrees, virtualizing hardware resources, and op-

timizing hardware architecture, SuperNoVA enables high-

accuracy, real-time, large-scale SLAM processing in resource-

constrained settings. Our evaluation on large-scale AR datasets

shows that SuperNoVA achieves SLAM backend latency re-

duction by 89.5% for the CPU baseline and 78.6% for the GPU

baseline, and reduce the maximum pose error by 89% over

existing SLAM solutions, while guaranteed to meet the 33.3

ms latency target.
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A Artifact Appendix
A.1 Abstract
This artifact appendix section describes how to access, exer-

cise, and evaluate the artifacts for each SuperNoVA compo-

nent, as performed in Section 6. As described in Section 5,

FireSim FPGA-accelerated simulations will be used to evalu-

ate SuperNoVA full-stack’s latency evaluation.

A.2 Artifact meta-information checklist
• Ubuntu 20.04.6 LTS, Vitis v2023.1
• Hardware: Intel Xeon Gold 6242, Xilinx U250
• Experiments: FireSim simulations of the SuperNoVA

SoC and accuracy results of SuperNoVA algorithm
in Section 5.

• Program: Chisel (RTL), C (Runtime), C++ (Algorithm),
Python (Script)

• Metric: Processing latency (ms), Target satisfaction
rate (rate of steps that meets the target deadline), and
iRMSE, iMAX defined in Section 5.

• Output: Parsed result from UART output of Super-
NoVA SoC, performance comparison box plot between
baseline incremental and SuperNoVA algorithm, exe-
cution time breakdown, error of each time step (Eval-
uation Figure 10-12, Table 4)

• How much time is needed to prepare the workflow?:
2 hours (running scripted installation).

• How much time is needed to complete experiments?:
6 hours (algorithm evaluation, workload image gener-
ation, running experiment, result parsing)

• Publicly available: Yes.
• Code licenses: Several, see download.
• Contact for Artifact Evaluators: Contact SLICE sup-

port (slice-support@eecs.berkeley.edu) for resources
(server, FPGA access).

A.3 Description
A.3.1 How to access. The artifacts consist of:

1. chipyard-supernova: Chipyard RISC-V SoC Genera-

tion Framework. (Github: https://github.com/SeahK/
chipyard-supernova)

2. supernova-ae: MEM RTL, runtime and testbenches

for evaluation (Github: https://github.com/ucb-bar/
SuperNoVA).

3. gemmini-ae: COMPRTL (Github: https://github.com/
ucb-bar/gemmini/tree/spica).

4. ra-isam2: SuperNoVA algorithm. (Github: https://github.
com/ucb-bar/ra-isam2).

Users do not need to download the latter three repositories

manually—they will be obtained automatically when the

Chipyard repository is set up.

A.3.2 Dependencies - Hardware. We have provided pre-

built FPGA images to avoid the long latency (∼7 hours) of
the FPGA bitstream synthesis process.

A.3.3 Dependencies - Software. Use ssh on your local

machine to the provided server. All other requirements are

automatically installed by scripts in the following sections.

Please use a tmux session running on the manager instance

to make sure long-running jobs are not killed as our setup

scripts and tests take a long time to run. Chipyard uses Conda

to manage system dependencies, so the user needs to ensure

Conda is installed on the system. Please follow 1.4.1.2 Default

Requirements Installation.
2
.

A.4 Installation
For artifact evaluation, begin by running the following to

clone the top-level Chipyard repository from github:
3

$ git clone
https://github.com/SeahK/chipyard-supernova

AE Reviewers: Please refer to chipyard-supernova’s

README
4
for any updates or extra instructions during AE

evaluation.

Make sure to do https://docs.fires.im/en/main/Local-FPGA-
Initial-Setup.html#non-sudo-setup to enable “ssh localhost”

whenever you open the new terminal or session. Next, run

the following, which will initialize all dependencies and run

FireSim and Chipyard setup steps (RISC-V toolchain installa-

tion, matching host toolchain installation, Linux base image

build, etc.):

$ cd chipyard-supernova
$ ./first-clone-setup.sh

Check script progress occasionally.

Once these steps have been completed, you are fully ready

to evaluate SuperNoVA.

A.5 Experiment workflow
Now that our environment is set up, we will run SuperNoVA

artifact. First, we will begin with SuperNoVA algorithm ac-

curacy results and workload preparation.

A.5.1 Running the Resource-Aware Algorithm and
Evaluation. This part does not require using FPGA. Run the
following commands to generate the data headers that will be

ingested by RTL simulation. While it is possible to simulate

the end-to-endworkload on FireSim, it is prohibitively expen-

sive on large datasets with thousands of timesteps. Therefore,

we split the algorithm evaluation into accuracy and latency

2https://chipyard.readthedocs.io/en/latest/Chipyard-Basics/Initial-Repo-
Setup.html
3
will be replaced to Zenodo in camera-ready version

4https://github.com/SeahK/chipyard-supernova
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evaluation. Go to generators/supernova/software/ra-
isam2 and run the commands below.

$ conda env create -f environment.yaml
$ conda activate ra-isam2
$ ./scripts/run_generate_headers.sh
$ ./scripts/run_parallel_ape_eval.sh
$ ./scripts/calc_iape.sh
$ ./scripts/plot_trajectory_ape.sh
$ conda deactivate

The third command runs a software simulation of all the

configurations of all datasets, and generates data headers for

a subset of all timesteps, which will be ingested by FireSim.

The fourth command runs an accuracy evaluation for all

timesteps. The fifth command prints out theMAX and iRMSE

errors for each dataset, which is Table 4 and the sixth com-

mand plots the errors per step, which is Figure 12. The output

figures are saved in outputs/.
Now, go to sims/firesim to prepare for the next step to

run FireSim.

$ cd ../../../../sims/firesim
$ source sourceme-manager.sh −−skip-ssh-setup

A.5.2 Building Linux image containingworkload. Step
1 is already contained in the first-clone-setup.sh setup

script. Users only need to follow Step 2.

1. (Skip - in setup script) On the manager instance, build

the FireSim-compatible RISC-V Linux image using

a buildroot-based Linux distribution. Follow the in-

structions in “Building target software” of FireSim

documentation.
5

2. Run the following command to build the baselines

and SuperNoVA tests written in C on a full Linux

environment.

$ cd generators/supernova
$ ./build-slam.sh

The above script will generate workload images that contain

all the tests that use SuperNoVA SoC.

A.5.3 Running FireSim simulations. Go back to the

Chipyard home path (chipyard-supernova), and run the

workloads by following the steps below.

1. Run FireSim simulations by running

$ ./firesim-runworkloads.sh

2. Wait for about 4 hours for the tests to finish.

5https://docs.fires.im/en/main/Getting-Started-Guides/AWS-EC2-F1-
Getting-Started/Running-Simulations

3. The result will be copied to a directory in

sims/firesim/deploy/results-workload.

Note that this script will not rebuild FPGA images for the sys-

tem by default, since each build takes around 6-8 hours. We

instead provide pre-built images by default on config_hwdb
.yaml, which is used in the paper’s evaluation.

A.6 Evaluation and expected results
After finishing running theworkloads, follow the steps below

to parse and view the results. Following the procedure will

generate the evaluation figures with SuperNoVA hardware,

which is Figure 10 and Figure 11. Figure 12 and Table 4 were

already generated from A.5.1 Note that non-determinism in

the Linux Kernel and workload packaging processes may

result in variations in the performance evaluations.

1. Running the following commands from result direc-

tory (results-workload) will generate figures for

each plot.

$ ./build_box.sh
$ ./build_breakdown.sh

2. Run the first command to parse results in Figure 10,

which shows the latency range and target satisfaction

rate comparison of each dataset,

3. The second command produces latency breakdown

plot in Figure 11.

A.7 Methodology
Submission, reviewing and badging methodology:

• https://www.acm.org/publications/policies/artifact-
review-and-badging-current

• http://cTuning.org/ae/submission-20201122.html

• http://cTuning.org/ae/reviewing-20201122.html

https://docs.fires.im/en/main/Getting-Started-Guides/AWS-EC2-F1-Getting-Started/Running-Simulations
https://docs.fires.im/en/main/Getting-Started-Guides/AWS-EC2-F1-Getting-Started/Running-Simulations
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
http://cTuning.org/ae/submission-20201122.html
http://cTuning.org/ae/reviewing-20201122.html
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